If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-6h-14=0
a = 1; b = -6; c = -14;
Δ = b2-4ac
Δ = -62-4·1·(-14)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{23}}{2*1}=\frac{6-2\sqrt{23}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{23}}{2*1}=\frac{6+2\sqrt{23}}{2} $
| –3(v–11)=–6 | | 7x+6=122 | | 2.5=z+8.6 | | 4/6=8/p | | 12/n=4/6.25 | | -4(p-3)=12 | | 24=t+48 | | 14/18=n/27 | | -24x-3(-8x)=0 | | 34=f-3 | | 4k+8=8+2k | | 25n17=n | | 1.5x+6=-12 | | F(x)=4x^2+19 | | 2=a+2/3 | | 16=s-8 | | 10/d=5/16 | | 9w=w+78 | | 4x–(3x–8)+8=x | | 6/10=n/30 | | -1=v/4 | | 82=t-44 | | 4(3+u)=24 | | 5(x+7)(x+7)(x+7)=7x+5 | | 1/2(x-3)+2.4=0.8x+4.7 | | -6x-19=4(-x-4) | | 3y+11=27 | | (n/5)=3-(n/10) | | B(x$=93 | | y=1+6(8) | | 6=3(k−71) | | -4(4x-2)=-30+4x-2 |